ISFD Knob Fabricated

OEM ISFD (Image copyright Driven Technologies INC)

The Integrated Standby Flight Display (ISFD) is mounted in the stand-by instrument cluster in the Main Instrument Panel (MIP).  The ISFD provides redundancy should the Primary Flight Display (PFD) on the Captain or First Officer fail. 

The ISFD is not a common panel to find second hand, and working units are expensive to purchase.  I don't  have an OEM ISFD, but rather (at least for the moment) use a working virtual image displayed by ProSim737. 

ISFD knob.  Two versions: one replicates the taller NG style while the other is slightly shorter.  Although not functional, they provide a better representation of the plastic knob that previously was installed

Conversion of an OEM unit is possible, however, the unit would need to be fully operational, and  finding a working unit at a reasonable price is unlikely.  ISFDs are expensive and reuse is common.  If a unit does not meet certification standard, it's disposed of because it's broken and cannot be economically repaired.

ISFD Knob

The ISFD knob that came bundled with the MIP I purchased is very mediocre in appearance – in fact it's a piece of plastic that barely looks like a realistic knob.  I purposely have not included an image, as the design would be an embarrassment to the company that produced the MIP.

A friend of mine is a bit of a wizard in making weird things, so I asked him if he could make a knob for me.  He made two knobs – one based on the standard design seen in the Next Generation airframe and the other knob a shorter version of the same type. 

Knob being fabricated on a lathe

Attention to Detail

Attention to detail is important and each knob has the small grub screw and cross hatch design as seen on the OEM knob.  The knobs have been made from aluminum and will be primed and painted the correct colour in the near future.

A 2 axis CNC lathe was used to fabricate the knobs.  The use of a computer lathe enables the measurements of a real knob to be accurately duplicated, in addition to any design characteristic, such as cross hatching or holes to install grub screws.

MIP Improvement - Non-Reflective Displays

Currently the simulator is installed in a spare room in the house.  The room is well lit during the day and has windows on two sides opening to the garden.  Until a dedicated room is constructed in a windowless room in basement, this will be the home of the simulator.

Reflections - Mirror Mirror On The Wall.......

One aspect that was problematic (at least to me) was that the MIP comes standard with 1.5 mm thick reflective perspex to cover each display.  Reflections were a problem in the well lit room during the day and only eased somewhat during the evening hours.  From the left hand seat it was almost impossible to read the FO's MPD or ND display.  I also tired of seeing my reflection on the Captain's display.

Three Options

I investigated the option of non-reflective glass, however, 1.5 mm thick glass is very thin and the chance of glass breakage during installation or use quite real.  Further, non-reflective glass does not work optimally if there is more than a few millimeters gap between the display screen and the glass.  The next option was either an adhesive-type material, which I discarded as I dislike applying "sticky" things to glass or perspex. or non-reflective acrylic.

The only clear acrylic I could find locally that was non-reflective and 3 mm in thickness; a little thick as the standard perspex used by FDS  is 1.5 mm thickness.  I experimented with the  3mm acrylic on the smaller gauges (flaps, yaw and brake pressure).  The thickness didn't appear to present a problem, however, the thickness when used on the main displays and EICAS did present an issue; the screws were now to short to attach the display frame correctly.

The Solution

The solution is obviously to purchase thinner acrylic, however, this is not obtainable at the moment.  I solved the situation by using a beveling machine and cutting the lip edge of the acrylic that sits on the MIP (the area covered by the display frame) to 1.5 mm.  Therefore, the edge of the frame is 1.5 mm in thickness whilst the the actual display portion in front of the display has a thickness of 3 mm.

The Outcome

The reflections are now gone, the displays are bright and readable across the MIP, and I finally can fly during the day without seeing myself in a mirror.

OEM 737-800 Lights Test Toggle Switch - Wired and Installed to MIP

OEM Lights Test Switch (before cleaning...) One switch comprising several switches

The lights test is an often misunderstood but simple procedure.  The light test is carried out by the crew before each flight to determine if all the annunciators are operating correctly (illuminating).  The crew will toggle the switch upward to lights test followed by a routine scan of each annunciator on the overhead, center pedestal and instrument panel.  An inoperative light may preclude take off.

The lights test switch is a three-way switch which can be placed (and locked) in one of three positions; it is not a momentary switch.  Toggling the switch upwards (lights test) illuminates all annunciators located in the MIP, forward and aft overhead and fire suppression panel (wheel well annunciator may not illuminate), while the central position (BRT) provides the brightest illumination for the annunciators (normal operation).  Toggling the switch downwards activates the DIM function dimming the brightness by roughly half that observed when the toggle is in BRT mode.

Depending upon which manufacturer’s Main Instrument Panel (MIP) you are using, the toggle switch may not function this way.  For example, Flight Deck Solutions (FDS) provide a three-way momentary toggle which is not the correct style of switch.  You should not have to hold the toggle to light test as you make your pre-flight scan.  The real toggle switch in the Boeing 737 aircraft is not a momentary switch.

Anatomy of the Toggle Switch

The OEM Light Test switch may appear to be a ‘glorified’ toggle switch with an aviation-sized price tag; however, there is a difference and a reason for this high price tag.  

The switch although relatively simple in output, encompasses 18 (6+6+6) high amperage individual switches assigned to three terminals located on the rear of the switch.  Each terminal can be used to connect to a particular aircraft system, and then to each other.  This allows the toggle switch to turn on or off multiple aircraft systems during the light test. 

The purpose of these multi-terminals is to allow the toggle switch to cater towards the high amperage flow of several dozen annunciators being turned on at any one time during the lights test, in addition to generators and other aircraft systems that are not simulated in Flight Simulator.  In this way, the switch can share the amperage load that the annunciators draw when activated during the light test.

The switch can control the annunciators (korrys) for the MIP, forward overhead, aft overhead, fire suppression panel and any number of modules located in the center pedestal.  

OEM Lights Test switch.  The appearance of the OEM switch is not dissimilar to a normal toggle switch; however, the functionality is different in that there are a number of terminals on the rear of the switch to allow multi-system connection

Terminals, Interfacing and Connection

To determine the correct terminals to be used for the light test is no different to a normal toggle-style switch. 

First, ascertain which of the six terminals correlate to the switch movement (toggle up, center and down).  The three unused terminals are used to connect with other systems in the real aircraft (not used in Flight Simulator).

To determine the correct terminals for wiring, a multimeter is set to conductivity (beep) mode.  Place one of the two multimeter prongs on a terminal and then place the other prong on the earth (common) terminal.  Gently move the toggle.   If you have the correct terminal for the position of the toggle, the multimeter will beep indicating an open circuit. The toggle switch does not require a power source, but power is required to illuminate the annunciators during the lights test.  

For an overview of how to use a multimeter see this post - Flight Deck Builders Toolbox - Multimeter.

Daisy Chaining and Systems

Any annunciator can be connected to the light test function, and considering the number of annunciators that the light test function interrogates, it is apparent that you will soon have several dozen wires that need to be accommodated. 

Rather than think of individual annunciators, it is easier to relate a group of like-minded components as a system.  As such, depending upon your simulator set-up, you may have the MIP annunciators as one system, the overhead annunciators as another and the fire suppression panel and modules mounted in the center pedestal as yet another.  If these components are daisy chained together (1+1+11+1+1=connection), only one power wire will be required to be connected at the end of the array.  This minimises the amount of wire required and makes connection easier with the toggle switch.

Two Methods to Connect to the Switch

There are two ways to wire the switch; either through the flight avionics software (software-based solution), or as a stand-alone mechanical system.  There is no particular benefit to either system.  The software solution triggers the Lights Test by opening the circuit on the I/O cards that are attached to the computer, while, the mechanical system replicates how it is done in the real Boring aircraft.

Switch in-line (software connection using ProSim737)

The on/off terminal of the toggle switch is connected to a Leo Bodnar card or other suitable card (I use a Flight Deck Solutions System card), and the card’s USB cable connected to the main computer.  Once the card is connected, the avionics suite software (ProSim737) will automatically register the card with to allow configuration.  Depending upon the type of card used, registration of the inputs and outputs for the card may first need to be registered in Windows (if using Windows 7 type into the search bar joystick and select calibration).

To configure the toggle switch in ProSim737, open the configuration/switches tab and scroll downward until you find the lights test function.  Open the tab beside the name; select the appropriate interface card (Leo Bodnar card) from the drop down menu and save the configuration.  

ProSim737 will automatically scan the interface cards that are installed, and if there is a card that has a power requirement, such as a Phidget 0/16/16 card (used to convert OEM annunciators, modules and panels), the software will make a connection enabling the lights test to function.

Considering the connection is accomplished within the ProSim737 software, it stands to reason the lights test will only operate when ProSim737 is open.

To illuminate the annunciators when the switch is thrown, a 28 volt power supply will need to be connected to the annunciators either separately or in a daisy chain array.

OEM aviation relay mounted in center pedestal

Stand-alone (mechanical connection)

The second method, which is the way it is done in the real aircraft, is to use an OEM 50 amp 6 pull/6 throw relay device. 

Depending upon the type of relay device used (there are several types), it may be possible to connect up to three systems to the one relay.

Lights Test Busbar

Although the Lights Test switch has the capacity to connect several systems to the switch itself, it would be unmanageable to attempt to connect each panel to the lights test switch.

To solve this issue a centrally-placed aviation-grade relay has been used in association with a busbar.

A benefit of using an OEM relay and busbar is that the relay acts as a central point for all wires to attach.  The wires from the various systems (panels, korrys, etc) attach to the busbar which in turn connects to the various posts on the relay.

The relay will then open or close the relay enabling power to reach the annunciators (via the busbar) when the switch is positioned to Lights Test.

The stand-alone system will enable the lights test to be carried out without ProSim737 being open.

Although the relay is not large (size of a small entree plate), it can be problematic finding a suitable area in which to mount the relay where it is out of the way.  A good location is to mount the relay inside the pedestal bay either directly to the platform floor or to a wooden flat board that is screwed to the lower section of the center pedestal.

Using the DIM Functionality (toggle thrown downwards)

This post has only discussed the lights test.  The DIM switch is used to dim the OEM annunciators (korrys) for night work. 

 

Diagram 1: basic overview to how the oem lights test toggle is connected

 
 

diagram 2: flow schematic between oem light test toggle and annunciators

 

OEM Brackets to Secure Gauges and Modules to Boeing 737 MIP

oem brackets. brackets for different sized modules and gauges.  The brackets when tightened provide a snug and secure fit for any OEM gauge or module

Original Equipment Manufacturer (OEM) parts usually attach to the infrastructure of the flight deck by the use of DZUS fasteners.  The easy to use fasteners allow quick and easy removal of panels and modules.  But what about the gauges that are used in the Main Instrument Panel (MIP); for example, the yaw dampener, brake pressure and AFDS module.

These items do not use DZUS fasteners for attachment to the MIP; rather they are inserted into the MIP from the front and secured from behind by a specially designed bracket.  The different sized brackets are made from lightweight aluminum and are designed to fit particular gauges and modules.   Each bracket incorporates, depending on the style, a number of screws.  These screws are used to loosen or tighten the bracket. 

The gauge is inserted into the MIP from the front.  The bracket is then placed over the gauge from behind the MIP and tightened by one or more of the resident screws.  The screws cause the bracket to clamp tightly to the shaft of the gauge and ‘sandwich’ the MIP between the flanges of the gauge and the edge of the bracket.  Once fitted, the Canon plug is then re-attached to the gauge.

selection of oem and reproduction gauges (flaps is reproduction)

Of interest is that some brackets have been designed to fit the differing thicknesses between MIPs.  By turning the bracket end on end the appropriate thickness of the MIP is selected.  

As mentioned above, the brackets are designed to fit specifically sized and shaped gauges and modules; therefore, it is important to purchase the bracket that fits the gauge you are using.  There are several different sized brackets on the market that are used in the Boeing 737 classics and NG airframes.  The 'NG' for the most part incorporates identically sized gauges as the classics, so a bracket is not necessarily NG specific.

One of the benefits in using the OEM brackets is that they are designed for the purpose, are very easy to install, and facilitate the quick removal of a gauge or module should it be necessary.

In the next post we look more at flight training and discuss crosswind landings.

Main Instrument Panel (MIP) - Seeking Accuracy in Design

OEM 737-800 MIP AND COMPONENTS (Shawn from Airdrie, Canada, 737NG Panel (4559309701), CC BY-SA 2.0)

A reproduction Main Instrument Panel (MIP) may appear identical to its OEM counterpart, but there can be there can be subtle differences depending upon which company you purchase a MIP from. 

The disparity may not be important to individuals who decide to use a full reproduction flight deck from the same company. However, problems will soon surface if mixing parts from other companies’ or using OEM components.

The following relate to all reproduction MIPS.

The Bezel. The bezel is the frame that surrounds the display units (DUs).  In the real aircraft the bezel forms part of the display unit, which is why the bezel breaks open in the lower area; to allow access to and removal of the unit. 

If you carefully look you will note there are no screws that hold the bezel in place to the MIP.  Quite a few manufacturers use Phillip head screws in each corner of the bezel to attach the bezel to the MIP. 

In the real aircraft the bezel is made from machined aluminum.  

Landing Gear Lever.  The real aircraft has a smaller knob than the one currently used by Flight Deck Solutions. The landing gear knob in the real aircraft is translucent.  Further, when the landing gear is in the down and locked position, the red trigger located on the gear shaft completely recesses between the two half-moon protectors and the trigger.

Fuel Flow Reset Switch. The real aircraft uses a switch/toggle with a larger defined and bulbous-looking head, rather than the standard-style toggle most manufacturers use.  The OEM toggle is also very specific in operation (3 way pull & release). 

The knobs used on the MIP. These knobs are called general purpose knobs (GPK) and it's uncommon for a reproduction knob to look identical to an OEM knob.  OEM knobs present with curved rather than straight edges and have the grub screw located in a different position to most reproductions.  Many reproduction knobs have the grub screw located at the rear of the knob. 

Additionally, OEM knobs have an inside metal shroud (circular metal retainer) and a metal grub screw thread, both important to ensure operational longevity of the knob; reproduction knobs usually do not have this.  The metal shroud can be important as it increases the longevity of the knob as it stops the acrylic from being worn down over time with continual use.

The Next Generation also has a backlit, black coloured line that runs adjacent to a translucent line on the front of the knob; at night this line is backlit. Most of the replica knobs have a black line which is a transfer (sticker) that has been hand applied to the knob.  Stickers and transfers often lift and peel away, and hand application is often haphazard with some transfers straight and others being off-center.

Annunciators (Korrys). The annunciators on most reproduction MIPs use LED technology and may exhibit an incorrect colour hue in contrast to the OEM part.  Reproductions can also be lacking with regard to the legend, as OEM legends are lazer cut and the lettering is very sharp and well-defined. 

Annunciators in the real aircraft are illuminated by 28 Volt bulbs contrasting the low brightness LEDs seen in reproduction Korrys - this alone can make a huge difference in aesthetics.  Finally, the push to test function seen in the real item, to my knowledge, is lacking in reproductions. Be aware that some newer Next Generation airframes may use LEDs in favour of bulbs.

Colour.   Boeing grey (RAL 7011), has a specific RAL colour number; however, rarely is every MIP or aviation part painted exactly the same grey colour; there are sublime differences in shade, colour and hue.  Inspect any flight deck and you will observe small colour variations.  Type RAL 7011 into Google and note the varying shades for a specific RAL number. OEM and reproduction panels both share varied colour hues of RAL 7011.

Dimensions & 1:1 Ratio.  High-end MIPs for the most part are very close to the correct 1:1 ratio of the OEM item and differences, if noticeable, are marginal.  But, less expensive MIPs can have the incorrect dimensions.  It is not only the overall dimensions that are important, but the dimensions of the spaces, gaps and holes in the MIP that allow fitment of the various instruments and modules.

Whilst this may not be a concern if you are using reproduction gauges that came packaged with your MIP, it can become problematic if you decide to use OEM parts.  There is nothing worse that using a Dremel to enlarge a hole in a MIP that isn't quite the correct size.  Worse still, is if the hole in larger than it should be.

Musings - Does it Matter ?

If everything fits correctly into whatever shell you're using, then a small difference here and there is inconsequential.  However, if you are striving for 1:1, then it is essential to know what is fact and what is fiction (Disneyland). 

Important Point:

  • There are many nuisances between MIP manufactures. I have mentioned but a few in this article.

System Simulation is a Priority

As I move more into the project, I realize that many items available in the reproduction market are not identical to the real aircraft; a certain artistic license has been taken by many manufacturers.  This said, while it's commendable to have an exact reproduction of a flight deck, keep in mind that a simulator is primarily a simulation of aircraft systems.

Of course this doesn't mean you throw everything to the wind aesthetically.  To do so would mean you would have an office chair, desk and PMDG in front of you.  Aesthetics are important, as they stimulate by visual cues a level of immersion, that allows the virtual pilot to believe they are somewhere other than in their own home.

If you inspect real-world flight simulators used by aircraft companies, you will quickly note that many of the simulators do not replicate everything, or strive to have everything looking just like the real aircraft.  Simulators are designed for training and whilst a level of immersion must be apparent, replicating aircraft systems takes priority.

Acronyms & Glossary

  • Annunciator - A single coloured light or group of lights used as a central indicator of status of equipment or systems in an aircraft. Usually, the annunciator panel includes a main warning lamp or audible signal to draw the attention of operating personnel to the annunciator panel for abnormal events or conditions.  To annunciate means to display or to become audible.  Annunciators are often called Korrys; Korry is a manufacturer of annunciators.

  • FDS - Flight Deck Solutions

  • Korry – See Annunciator.  A brand of annunciator used in the Boeing 737 airframe.

  • Legend - The plastic lens plate that clips to the annunciator.  the legend is the actual engraved writing on the lense.

  • MIP - Main Instrument Panel.

  • OEM - Original Aircraft Manufacture (aka real aircraft part).

  • RAL - International colour matching system.

RMI Knobs Installed to Main Instrument Panel (MIP)

oem rmi knobs

Following on with the theme from my last post, I have replaced the two tear-drop style RMI knobs supplied by Flight Deck Solutions on their Main Instrument Panel with two replacement knobs.

The replacement knobs are highly detailed reproductions of the original 737-800 RMI knobs.  I would like to have used genuine knobs; however, as they are usually attached to an RMI gauge, finding the knobs alone at a reasonable price would be a difficult if not an impossible task.

The knobs have been individually sculptured using clear ABS plastic while the front plate is made from clear acrylic.  The knobs are painted in the correct Boeing grey colour and the black and white stenciling applied directly to the front of the knob.  The knobs can be easily backlit using an LED, although I have yet to do this.  The sizing of the knobs can be determined from information supplied by EHC Knobs located in Farmingdale, New York.

Looking Pretty.....

At the moment the knobs have not been interfaced and just sit there looking pretty. 

In the future, I may interface the knobs by installing micro-buttons and/or a micro- rotary behind each knob.  The knobs will then be connected to an interface card.  However, at the minimum this requires cutting the MIP to create additional space for the location of the micro-switches – something that at the moment I do not want to contemplate.  If given a choice, procuring a genuine OEM RMI gauge would be my preferred option.

In the interim, the RMI Switch Assembly panel discussed in my earlier post will suffice.

UPDATE

Acronyms

  • MIP – Main Instrument Panel

  • RMI – Radio Magnetic Indicator.  The gauge that displays VOR and ADF mode.  Part of B737 NG stand-by instrument cluster

Replacement Sidewalls for FDS MIP

I have mentioned in an earlier post concerning the Main Instrument Panel (MIP) from Flight Deck Solutions, that the unit was a little wobbly due to the thin metal used on the side-walls.  Whilst this is not a huge problem and certainly not an issue when the MIP is locke" into a shell, it does pose a minor issue when used without a shell.   Therefore, I decided to fabricate some replacement side stands for the MIP from 3mm aluminium sheet.

AutoCad was used to copy the dimensions of the original FDS sidewalls, and a lazer cutter cut the aluminium sheeting to the exact measurement.  Using a standard pipe bender, I bent the sides out at 45 degrees to allow slightly larger spacing for the rudder pedals.  I also increased the surface area of the metal which is used to attach the MIP to the platform, this ensures a more stable and secure attachment point for the MIP.  To replicate the MIP side-walls exactly, I TIG welded the narrow section that folds behind the stand.

Currently the aluminum is unpainted.  At some stage in the near future I'll either have the two units powder-coated in Boeing grey to match the colour of the MIP, or more than likely I'll prime and paint them myself.

The MIP is now very stable and does not wobble at all.

Main Instrument Panel (MIP) by Flight Deck Solutions - Review

 
 

Overview

The main instrument panel (MIP) is arguably one of the most important pieces of equipment in a flight deck; it is around the MIP that everything revolves.  Every enthusiast wants the MIP to be athletically pleasing and as real to the OEM product as possible.  Depending upon the end use, the MIP may act as a skeleton from which to add OEM parts, or standalone accommodating reproduction parts.

There are several companies that produce MIPS and each has its nuances.  After extensive research, Flight Deck Solutions (FDS) in Canada was commissioned to supply the MIP.

Note that in this review, reference is made to the term OEM which is an acronym for Original Equipment Manufacturer (aka real Boeing 737 aviation part).

The image above is the Duel Seat Training Device offered by Flight Deck Solutions (image courtesy and copyright FDS).

Information - Not Pretty Pictures

This post is not intended to be an exhaustive review of the FDS MIP or the parts attached to the MIP.  Rather, the intent of the review is to provide adequate information for enthusiasts to make an intelligent decision to which MIP to purchase.  

Furthermore, it is important to understand that all reproduction simulator parts are exactly that - a reproduction or facsimile of a real part.  Often reproduction parts are not to scale and have subtle differences to the real item.  Whether this is important is at your discretion and very much depends upon whether you intend to use OEM parts or solely reproduction parts.

To view images of the MIP, navigate to the image gallery

Interface cards have not been discussed for two reasons.  First, there are several differing types of cards that can be used, and second, Integrated Cockpit Systems (ICS) units come ready-made with all wiring and interface cards installed. 

ICS and Options

FDS provide two options when purchasing their MIP - naked (do it yourself) or as an integrated cockpit system (ICS).

The ICS route was chosen because of time constraints; by eliminated the task of wiring and soldering a multitude of interrelated electronic parts together, it would allow more time to concentrate on converting real aircraft parts to use in the simulator.  At the forefront of the B737 project, the MIP was to be a skeleton from which to hang OEM parts.

The MIP consists of two sections; the main instrument display including the lower display and glare shields (eyebrows), and the base structure incorporating the CDU mounting area, lower display and stand.

FDS landing gear lever is a good facsimile of the real lever; however, the lever does not recess between the two half moons.  Nor is the red trigger spring-loaded as in the OEM mechanism.  Despite these aesthetic shortfalls, the landing gear functions well.  The leather skirt is a step in the right direction concerning authenticity

UPPER MIP (Instrument Panel, Glareshield and Lower Panel/Kick Stand)

The panel is made from CNC machined acrylic and the glare shield from injection molded plastic. The panel and glare shields have been attached by screws to a light-weight powder coated aluminum frame which incorporates a 4 inch wide shelf on the rear side. 

The cut-out lettering, which allows the lettering to be back-lit, is very crisp with well defined edges.

The panel has been professionally painted in Boeing grey.  Although the panel is made from acrylic, the use of high quality flat paint removes the sheen that acrylic is renowned for.  In comparison to other plastic-looking panels on the market, the colour and appearance is very true to form.  It looks 'almost; like the OEM panel. and matches the real aircraft parts very well.  Furthermore, FDS apply the paint in several thin layers which makes the coating very resistant to chipping and scratching.

Switches have been mounted in the correct locations and the wiring from these switches has been secured within a wiring lumen or by plastic cable ties.  The switches and knobs replicate those of the real aircraft and have the correct feel, although the general purpose knobs (GPK) do not replicate the exact appearance of the OEM knob.  Where a panel has not been included (not stock B737 configurations) a blanking panel has been fitted.

The soldering work and connections on all switches are excellent; it is more than obvious that the person who did the soldering work is a professional with many years experience.

The gear lever is sturdy and feels solid.  To engage the landing gear, the lever must be pulled out of its recess and pushed up or down.  The detail to the lever is excellent and installation includes the correct-looking fiber sleeve.  The mechanism does not have the spring-loaded trigger; the trigger is a solid cast item attached to the lever.

Annunciator lights (six packs) and various warning lights are all functional; however, pale comparison to OEM parts and other high-end reproductions; they appear 'cheesy'.  The glare shield is strong textured ABS plastic and wraps over the top of the MIP.  A correctly sized chart pocket is screwed to the top of the shield.  The two glares either side of the MIP on the Captain and First Officer side are painted MDF wood and although not have a negative appearance they do not replicate the appearance of the OEM glare which is made from textured foam plastic.

The shelf system, located behind the main instrument panel, is an excellent idea.  The shelf, in addition to providing an area for the FDS monitor stands to be mounted, is a good platform to mount various cards, speakers and other items that may be required.

The FDS bracket, a novel design to hold the display units firmly in place.  The display unit bezel is made from plastic and does not hinge outwards as the real bezel does.  the knobs on the ISFD are not replicated

The lower display modules, which are mounted to the lower area of main panel, are installed using normal Phillips-head screws.  In a real B737, panels and modules are usually secured using DZUS  fasteners or skirted screws.  It would have been a nice touch to have replicated the use of DZUS fasteners on the panels in the lower kick stand.

Display Unit Covers

The protective displays that the computer monitor screens (display units) are made from 1.5 mm thick perspex.  I have found the perspex to be very reflective - especially so if the simulator is located in a well-illuminated room.    

Integrated Back-Lighting (IBL)

Integrated back Lighting (IBL) is the name FDS has coined to refer to their proprietary design in which FDS utilise aircraft bulbs rather than LEDs.  IBL is supplied to illuminate the back lighting in all FDS panels and modules.  

One of the main advantages of a bulb in contrast to that of a LED is the throw of the light and the colour temperature.  The area of coverage from bulbs is relatively even, where the coverage by an LED is more pinpoint and uneven.   The only way to achieve a similar light coverage to bulbs using LEDs is to use several LEDS mounted in close proximity to each other. 

One area that the use of bulbs  excels is the rear illumination of the stencil-cut lettering on the MIP.  Bulbs will completely illuminate the stencil cut-outs where LED lighting will often only illuminate part of the stencil cut-out (unless there are several LEDs).

Bulbs and LEDs have different colour temperatures.  A bulb transmits a warm colour (soft orange hue) whereby a LED transmits a cooler colour that appears more blue in comparison.

All Boeing airframes, with the exception of the newest airframes utilise 5 and 28 volt incandescent bulbs.

The only downside of IBL (if there is one) is that the bulbs generate quite a bit of heat.  The life of a bulb is also less than a LED.

Ground Proximity Panel showing use of Phillips head screws rather than the more usual DZUS fasteners

What the MIP Lacks

The non-use of DZUS fasteners in the lower panel (kick stand) and the failure to use skirted screws has been mentioned.

Stand-by instruments and clocks are not included.  FSD supply a stenciled backing card which is mounted behind the perspex to mimic the look of the yaw dampener, brake pressure, clock and flaps gauge. 

Considering the purchase price of a MIP, and considering the importance of a working flaps gauge, an operational analogue flaps gauge should be a stock item.  

The avionics suite (Sim Avionics) can display virtual stand-by instruments id required.

The speed reference panel and knobs are not functional. The knobs used in the speed reference panel do not replicate the OEM knobs used in the B737; the real aircraft uses double rotary encoder knobs. As with the flaps gauge, these knobs should be functional and, at least shoe some resemblance to the real part.

Software - Interface IT

The software to interface the MIP (InterfaceIT) seems to be well designed and robust.  It does require a learning curve to become proficent with the software, but once proficent the siftware is logical in layout and use.  Installation of the IT software is straightforward.

Additionally, there is a direct link between InterfaceIT and Sim Avionics which makes internal configuration and programming very easy.

Flight Avionics Suite

Duel Seat Training Devices (DSTD) and MIPS configured by Flight Deck Solutions use Sim Avionics as their flight avionics suite.  After you receive your MIP, FDS staff will e-mail to you a file which you import into InterfaceIT.  This file holds the data assignments for the MIP buttons and switches.

Although FDS recommend Sim Avionics, there is no obligation to use this software; the MIP will operate with whatever software you choose.  A seperate post will deal with a review of Sim Avionics.

The rear shelf located behind the MIP and the propriety bracket used to hold the display units (computer screens) firmly in place.  The bracket works exceptionally well and the shelf is very sturdy

Lower Base Structure

The base structure comprises the lower section of the MIP and includes the CDU bay structure and lower display screen.  The structure is made from aluminum which has been professionally powder coated in Boeing grey. 

As with the upper section of the MIP, the attention to detail is obvious.  There are no sharp edges on the CDU bay structure, nor are there gaps where panels attach together.  Screws match their holes correctly.

The DZUS rails that line the internal section of the CDU bay marry perfectly with the DZUS fasteners used to secure the Control Display Unit (CDU/FMC) to the rails.    It does not matter whether a reproduction or OEM CDU unit is used as both will fit perfectly.

The lower display screen, which fits between the two gaps in which the CDUs reside, is identical in shape and manufacture to the upper display unit bezels.  Unlike the three upper bezels in which a standard computer monitor can be mounted, the lower screen requires a smaller monitor which is not an off the shelf item.

clock panel showing backlighting during the day. the fabrication of this panel and button is very good as is the stenciling

Dimensions, 1:1 ratio and Using OEM Parts

The ability of a manufacturer to produce a MIP that is the correct 1:1 ratio to the real item cannot be underestimated.  If an enthusiast is intending to only use instruments and panels produced by that manufacturer, then any size disparity is probably unnoticeable and probably not that important.  However, if OEM parts are to replace reproduction parts, then the base sizing become crucial to the correct and easy fitment of an OEM part.  In this area, the FDS MIP has some shortfalls.

The MIP has a number of holes and gaps that parts reside, for example for the AFDS and flaps gauge.  If the holes are incorrectly matched to the OEM part, either a new panel (aluminum backing plate) will need to be engineered and painted, or the hole may need to be enlarged.  Although enlarging a hole in a MIP is straightforward, the opposite is problematic and requires the design of a new panel.

Unfortunately, many of the holes in the FDS MIP do not correspond to the correct size when fitting OEM parts.  For example, the holes that the AFDS units reside must to be enlarged considerably to enable OEM AFDS units to be fitted.  Likewise, the holes to fit the annunciators need to be enlarged.  The hole that the flaps gauge is housed is far too large and a new panel needs to be designed to gt an OEM flaps gauge.

Detail of the angled shelf used to accommodate the I/O cards.  The multi-voltage computer power supply can also be seen mounted behind the perforated vents.  The terminal block caters to 5 and 12 volts.  The interface card is the FDS SYS card which comes standard with the ICS MIP

Power, System I/O Cards and Cabling

A multi-voltage computer power pack is used to power the MIP and has been mounted at the rear of the lower base structure. 

The position chosen is well suited to internal wiring and allows easy access should a problem develop.

An angled shelf has been engineered to fit immediately behind the CDU bay.  The design of the shelf is intended as an area on which to mount the various interface cards required to operate the simulator.

The interface cards required to operate the MIP have been secured to the angled shelf and all wiring has been expertly soldered or attached via solid electrical clips.  Cabling and connections are of the highest quality.  Each of the wires that are connected to the SYS board has been tagged with a plastic tag which indicates their function; a good idea if you need to change something at a later date or troubleshoot a particular problem.

There has been no compromises with regard to how the staff at FDS wired the MIP - it is beyond reproach.

3mm replacement side stand.  The replacement stand inhibits any movement of the MIP as the structure is not (at the moment) installed within a shell

Base structure (side stands)

The base structure (stand) has been designed to be mounted either directly to a base platform.  The mounting points are numerous holes along the lower angled edge of the stand.  A concern was that the structure would wobble, as it is quite high and made from light-weight aluminum. 

These concerns were short-lived; once each attachment point was secured with a screw the assembly was quite solid.  This said, if you energetically engage the landing gear lever, there is a very slight movement in the upper area of the MIP.  If you are mounting the MIP into a cockpit surround, any movement will cease as it will be attached to the outer skin of the shell.

To counteract any movement, it is a relatively easy matter to fabricate two replacement side stands from a thicker sheet of aluminum (3-5mm).  This will guarantee that there will be no movement when manipulating knobs, the landing gear, etc.

Navigate to this post to read about the replacement side walls.

Communication, Support and Delivery

Communication with FDS was excellent.  E-mails were always answered in a timely manner and Peter and Steven Cos are very professional in their approach. I was continually kept in the loop regarding construction and shipping.

Support if and when required is either via a dedicated forum, e-mail, or if necessary by telephone.  Peter and Steve Cos very approachable and helpful and their support is second to none.  I would go so far as to say that the support that FDS provides cannot be matched.

It is important to note that Flight Deck Solutions is not a mail order company with products in storage waiting to be shipped; products are assembled to order.  This means that often there is a timely wait until you receive your shipment.

The MIP I had delivered to Australia was packed in and attached (screwed) to the floor of a large wooden crate.  It arrived undamaged.

Quick List - Pros and Cons

PROS

  • Well designed & constructed

  • Excellent workmanship (metalwork and wiring)

  • Realistic and highly effective Integrated Back-Lighting (IBL)

  • Good functionality

  • Very clean appearance - wiring and cards favorably positioned

  • 1:1 (or as near possible) to the real MIP (exception if using OEM gauges)

  • Moderate to high attention to detail

  • Robust & functional software (InterfaceIT) if using Sim Avionics avionics suite

  • Excellent paint quality (several layers of paint) that resists chipping and scratching

  • Outstanding support - the best in the industry

CONS

  • No analogue flaps gauge, other than virtual version (rectified by spending more money)

  • No stand-by instruments or clock (rectified by spending more money)

  • Non use of DZUS fasteners in lower panels above 'kick stand' (small things do make a difference)

  • RMI knobs are very low quality

  • Speed reference knobs are very low quality & do not replicate OEM B737 knobs

  • Landing gear lever does not recess behind shield when in down position

  • Landing gear does not utilise the spring trigger as in the real aircraft

  • Section between upper and lower MIP (kick-stand) is not the correct shape.  It should be rounded and not be an angled piece of aluminum

  • Display unit covers are very reflective (easily rectified- remove or replace them with tinted displays)

  • Slightly inaccurate General Purpose Knobs (GPK) - poor stenciling on knobs

  • The MIP is not completely 1:1 and if using OEM parts, some engineering is required to fit OEM parts

  • The MIP is not an exact reproduction and artistic license has been taken in some areas (for example, the section between the upper and lower MIP (kick-stand).  The MIP also lacks various screws and fasteners seen on the OEM MIP

Important Point:

  • If you are intending to add OEM panels, switches and knobs to the FDS MIP, be aware that many of the panels do not fit the FDS MIP.  This is because the MIP frame is not exactly 1:1 with the OEM equivalent.  In some instances (such as when retrofitting panels) the MIP is out by up to 1 cm.  Also be aware that OEM korrys, flaps gauges and some of other avionics will not fit into the precut holes.  You will need to either enlarge the hole or make it smaller.

FDS GPK with backlighting. The knob has a slightly different shape to OEM knobs. the adjustable propriety backlighting is perfect

General Purpose Knobs (GPK)

The GPKs are of high quality, however fail in a number of areas.

The black line is a manually applied adhesive which depending upon which knob you are inspecting, may or may not be quite straight.  Being adhesive, with time the transfer lifts, especially at the ends.  The translucent line between the black outer lines is not as bright as that observed in the real aircraft.  Not all knobs have the transfers correctly aligned.

poor quality lower kickstand knobs. gpk showing excess plastic from manufacture process

The knobs are the incorrect shape and the grub screws are located in the wrong position on the knob.  The knob also does not have an inside metal shroud (circular retainer).  The retainer increases the longevity of the knob as it stops the acrylic from being worn down over time with continual use.

The knobs on the lower kick stand are also of poor quality bearing only a little resemblance to the OEM knobs

The knobs serve a function, but for the price of the MIP, knobs that reflect a more accurate representation would have been appreciated.

fds adf knob. WHY EVEN HAVE THIS AS IT IS NOTHING LIKE THE OEM RMI KNOB

RMI Selector Knobs

The knobs are made from acrylic with a transfer attached.  The knob has no functionality and is attached to the MIP in a recessed hole.  The RMI knob bears no resemblance to the OEM knob and is very poor quality.

Speed reference knobs are very low quality

Speed Reference Knobs (SRK)

The speed reference knobs supplied with the FDS MIP bear no resemblance to the OEM knobs. The OEM knob should be a double rotary encoder knob.  There has been no attempt to replicate this type of knob.

Used Fuel Reset Switch

FDS have used a normal two-way toggle which is incorrect.  There is no similarity to the OEM used fuel reset switch.  The OEM toggle has a large bulbous head and is a specially-designed three-way toggle.

fds Boeing warning system. although functional the displays fall short of replicating the oem items

Autopilot Flight Director System (AFDS) 

Although not an exact replica of the OEM part, FDS has done a good job replicating the functionality of the AFDS.  Unfortunately, if you wish to replace the FDS unit with an OEM AFDS unit, the hole in the backing plate that attaches to the MIP will need to be enlarged considerably to allow correct fitting of the OEM component.

Boeing Warning System (six packs)

Compared to the OEM counterpart, FDS’s offering is lacking. The two warning buttons can be depressed very easily where the OEM buttons are quite firm requiring a good push. The six packs work quite well, however, lack adequate light coverage when a warning is displayed.

Annunciators (korry condition lights)

The FDS MIP uses LED reproduction annunciators (korrys).  The LEDS are illuminated by two 5 volt LED lights which do not provide complete light coverage across the lens plate.  The brightness of the LEDS is also not as bright as the OEM annunciators. 

Furthermore, the hole in the MIP that the korrys reside is a tad on the small side; therefore, if you are intending to replace the reproduction korrys with Original Equipment Manufacture (OEM) annunciators, you will need to engineer the hole to a larger size.  This is unfortunate as a MIP should be manufactured 1:1 to allow reproduction parts to be replaced with OEM parts.

on the oem landing gear the red trigger sits flush with the two half moons

Landing Gear Lever

The landing gear lever requires more explanation.

In the real B737-800 NG the landing gear handle sits closer toward the main instrument panel.  The half circular shield is designed so that the red-coloured gear trigger sits between the two half moon shields when the lever is in the DOWN position.  In the FDS version, the trigger sits too far out from the front of the MIP and the trigger is not protected by the two shields.

Furthermore, the trigger is not spring-loaded as in the OEM mechanism; it is a solid piece of metal.

Lights Test / DIM Switch

A normal two-way momentary toggle is used which is incorrect.  The OEM switch is a three way non-momentary switch which allows the switch to be placed in any one of three positions.  The OEM toggle is also large than a standard toggle switch.

Final Call

The MIP is well made and has been finished with obvious care; parts line up correctly, screw heads have not been burred and paint not chipped.  Wiring, soldering, parts, switches, paint, colour, rotaries, blanking panels and display frames are of the highest quality.  It is obvious you are dealing with a premium product that provides an very good facsimile of a 737-800 instrument panel.

Downside is the lack of any hard-wired gauges, poor quality speed reference and general purpose knobs, lack of DZUS in lower panels, no flaps gauge, and a wrongly positioned landing gear lever (when in the down position).  Another issue is that the MIP is not 1:1 with its OEM counterpart, nor is it a 100% accurate rendition of an OEM MIP. 

This said, for many enthusiasts this will not be an issue as the differences are minor.  If you intend to use OEM parts then some parts of the MIP will need to be fabricated to enable the real parts to fit snugly into the MIP.

Depending upon your end use - a MIP with reproduction gauges, or a MIP skeleton to hang OEM parts - your views will alter.  Certainly, the FDS MIP is not to be discounted as a premium product; it is a pity that FDS did not take a few extra steps to make this MIP the 'Queen of the crop.

The closest rival to the FDS MIP is the MIP manufactured by Fly Engravity and SimWorld.  Other MIPS are available from other companies, but the FDS MIP, although lacking in some areas is superior in many ways. 

Rating is 7.5/10

Please note that this review is my opinion only..  Furthermore, note the date of the review.   Flight Deck Solutions may have updated their MIP after this review has been published. 

  • Thanks to Peter Cos, Flight Deck Solutions for allowing the use of the front image.

NOTE:  Before taking what you read as gospel, check the FDS website in case these shortcomings have been rectified since this post was published.