CP Flight ADF Radio Modules - Review

cp flight ADF radio, NAV 1/2 and M-Comm communication module (Flight Deck Solutions).  Note the use of oem 737 DZUS fasteners

CP Flight in Italy is well known for its production of quality simulator parts, in particular their Main Control Panel (MCP) units that work out of the box – literally plug and fly.  This short review is for the ADF Radio modules that I have recently installed into the simulator center pedestal to replace the radios made by SISMO Solicones. Although this short review pertains to the ADF radios, all CP Flight modules are made similarly to the same quality and utilise the same methods of connection.

ADF radios may appear “old school” with many virtual flyers more concerned in learning and understanding the more modern LNAV, VNAV and GPS navigation systems.  It’s important to realize that not all countries comply with the aviation regulations enforced within the United States (FAA).  Many developing nations still use VOR and ADF stations as the primarily means of approach.  Further, knowing how to use and having the appropriate equipment installed to be able to follow these “older style” navigation beacons is often good practice for redundancy and to cross check the results from primary navigation.  Using VOR and ADF navigation is also more challenging, interesting and enjoyable.

Construction and Appearance

The modules are constructed using the same technique that CP Flight uses to produce all their modules and panels.  Each upper panel is made from CNC machined acrylic which produces a very crisp finish and allows any letter cut-outs to be very well defined.  The electronics board, rather than being left “naked” like other manufacturers, is sealed within a lightly constructed metal case.  To allow the user to drop the module directly onto the pedestal rails, each module has overlapping wings that conform to the width of the rail.  To ensure long life, the ADF radio modules incorporate dual concentric rotary encoders with stainless stems rather than plastic stems.

Inspecting the pictures of the ADF radios. you will observe a thin line of light between each illuminated digit.  This is not visible in true life and is only an artifact of using a rather long shutter speed to take the photograph.

High Quality

The knobs and switches, which are custom machine injected, are true to life and are tactile in feel.  As you click through the frequencies the movement is stable and well defined.  There is no catching as the knobs are turned.  The push keys on the units are plastic moulded, backlit and work flawlessly; they do not stick in the down position when depressed, and click back into position when pressure is released.  The frequency displays are 7 segment digits and are very easy to read.  Digit colours are in amber yellow. 

The upper panel of the module is attached to the electronic circuitry within the lower section by a metal backing plate; this increases the strength of the unit and assists in the dissipation of heat.  The modules are a well presented piece of avionics that accurately replicates the functionality found in the real 737 navigation radio. The panel is 1:1 with the OEM counterpart.

A light metal case protects internal electronics and two 5 pin DIN plugs supply connection and power to and from the radio and to other CP Flight components

No System Boards and Daisy Chaining

The modules do not require control boards - they are completely stand-alone.  This minimises the wiring involved and the challenge of finding another location for yet another I/O card.  However, to operate the modules you will require either the CP Flight Main Control Panel (MCP) or the 737MIP board.  Both of these devices provide the power and ability for the modules to connect to and communicate with the main computer and FSX.

CP Flight uses what has to be one of the simplest methods for module connection – daisy chaining.  Daisy chaining is when you have several modules linked by 5 pin DIN style connectors and one cable.  The cables connect in relay between whatever modules you are using and eventually link to either the CP Flight Main Control Panel (MCP) or 737MIP board for connection to the computer via a single USB cable.

Boeing Grey

All CP Flight B737 series modules and panels are professionally painted in "Boeing grey".  I’m not sure how many thin coats of paint are applied, but to date I have experienced no problems with regard to paint chipping or flaking.  Although this last comment may appear trivial, the quality of paint is important.  The modules will be used for many years and during the course of operation, you will be placing pens, clipboards, charts, coffee cups, etc on the center pedestal and the modules.  Further, as the units are flat, dust will accumulate requiring dusting and cleaning.  Low quality paint will scratch, fade and wear thin with time.

The observant will note that there is a difference in colour shade between the modules made by CP Flight and Flight Deck Solutions.  A purist may argue that this is not realistic, however, I disagree.  Through time, Boeing has used several shades of what has been coined "Boeing Grey" and it is not unrealistic to have modules sporting different shades of the baseline colour.  Different avionics manufacturers (in the real world) also use different colour shades of "Boeing grey". 

DZUS Complaint

If you are utilising real aircraft parts in your simulator, in particular a center pedestal, then any module that is DZUS complaint is advantageous as it allows for the module to be dropped directly onto the DZUS rails and secured by the DZUS fasteners.  Unfortunately CP Flight fails in this area as their modules are not DZUS complaint.  Each module has the appropriate holes drilled; however, they only fit replica DZUS fasteners (supplied).  The width of the hole is too small to install genuine DZUS fasteners; you will be required to drill the hole a little larger to accommodate the genuine B737 fastener.

This picture illustrates the fit of the CP Flight ATC panel to the rails of an oem center pedestal Each panel is very closely aligned to the holes in the rail enabling the replacement of reproduction dzus fasteners with oem dzus fasteners

Back-Lighting

The ADF modules are back-lit by several strategically placed LED lights.  This is commonplace within the industry with the exception of some high-end suppliers such as Flight Deck Solutions which use their own IBL back lighting systems utilising real aircraft bulbs.  I have no issue with the back lighting and the module is evenly lit, illuminating all cut out letters.

CP Flight Module Set-up

The modules are stand-alone and do not requite software to be installed for operation – they are plug and fly; however, to connect the modules (via daisy chaining) to the computer via a single USB cable, either requires the CP Flight Main Control Panel (MCP) which acts as a power source amongst other things, or the dedicated 737MIP board.  Software is required for the operation of the MCP and 737MIP board and can be downloaded from the CP Flight website.  The software is easy to install and to configure. 

Downside – Ghosting of COM Port

I’ve already discussed the simplicity of daisy chaining and the benefits of not needing to use a multitude of wires and I/O cards; but, everything comes at a price and CP Flight’s “Achilles Heel”, is the method they have chosen to connect everything to the computer.

Modules are connected to and from each other and to the MCP or 737MIP board via daisy chaining.  The MCP or 737MIP board provides the power to run the module and allow information to travel between the computer and the module. The MCP or 737MIP board is then connected to the computer via a single USB cable.  To connect to the computer requires that a COM port is ghosted to replicate a serial port. 

Whilst this process is automatic, and occurs when power is applied to the MCP or 737MIP board, many users experience problems with the software ghosting the port.  Usually the ghosting issue is solved with appropriate drivers and once the connection is made once, rarely is this problem again experienced.

Reliability and Performance – Software and Modules

Software

No problems, other than the initial connection problems that “maybe” associated with the ghosting of the COM port.

Modules

There is no time lag when altering frequencies; the digits spin as fast as you can turn the dial.  Drop outs have never occurred.  The tone switch operates correctly and always listens for and connects with the correct marker morse tone.  It’s important to note that the tone switch does operate as designed and can be used to switch off the “somewhat annoying” morse tone which is heard, when in range of the ADF.

Support

Support from CP Flight is either directly via e-mail or by a dedicated forum.  The support provided by CP Flight is exemplary.  Paolo from CP Flight stands by the products he sells and every effort is made to ensure your modules work as advertised.  There is absolutely no problem dealing with this company as the owners are very trustworthy and deliver what they promise.

Quick List – Pros & Cons

PROS

  • Well designed & constructed

  • Realistic quality machine-injected switches & stainless rotaries (not plastic)

  • 1:1 to the real B737 series aircraft

  • Good attention to detail

  • Operational morse tone switch

  • Strategically positioned backlighting

  • Very easy to set-up and connect (daisy chaining)

CONS

  • Ghosting of COM port can be an issue when using MCP as connecting equipment (no experience with 737MUIP board)

  • Non DZUS compliant

Overall Opinion

I am very impressed with these modules.  They are solid, well constructed and operate flawlessly out of the box!  The quality of the modules is very high and it’s a pity that they are not made to be DZUS compliant.  They suit the high end enthusiast to professional market.  

My rating for the modules is 9/10

Please note that this review is my opinion and is not endorsed by CP Flight.

Navigation and Multi-COMM Radios by Flight Deck Solutions - Review

Navigation and M-COMM radio.  Note the even backlighting and well defined seven -segmented displays.  Also note DZUS connectors

The avionics that are used in the center pedestal are important; they are used regularly, are always visible, must function correctly, and be robust to sustain long use.

This review will discuss the radios produced by Flight Deck Solutions (FDS). In particular, the navigation (NAV 1/2), multi-comm (M-COMM) and ADF (1/2) communication radios.

The navigation and M-COMM radios are USB driven, while the ADF radios use Ethernet.

  • For brevity, I’ll discuss the construction of the panels together, as each of the panels has been constructed and along similar grounds, and functions similarly.

The navigation radio is a single channel radio unit designed to handle navigation frequency selection and management.

The M-COMM is a multi-channel communications radio that replicates the latest radio used in the Next Generation airframe.  The radio encapsulates VHF 1, VHF 2 and VHF 3, HF, HF2 and AM.  For simulation purposes, the M-COMM is an advantage to those who only wish to purchase one communications radio, rather than the two radios (COM 1 and COM 2) traditionally used.

fds ADF radio with rear of radio in background.  The finish of the panel is above par.  Note that the ADF/ANT and OFF/ON switches can be toggled, but are not functional

Appearance and Construction

The panels are constructed using the same technique that FDS to fabricate their Main Instrument Panel (MIP).  

Each upper panel is made from CNC machined acrylic which produces a very crisp finish and allows any stencilled letter cut-outs to be very well defined.  Each of the radios use a dual concentric rotary encoder with a stainless steel stem.

High Quality

The knobs and switches, which are custom machine injected, are true to life and are tactile in feel.  As you click through the frequencies the movement is stable and well defined.  There is no catching from the encoder as the knobs are turned.  The push keys are plastic moulded, back-lit and work flawlessly; they do not stick in the down position when depressed, and click back into position when pressure is released.  The frequency displays are seven-segmented display and are very easy to read.  

The colours of the digits are amber yellow for the navigation and ADF radios and warm white for the M-COMM radio.  The seven segmented display in the ADF radio is a slightly different font to the those in the navigation and M-COMM radios.  The colour is also a tad more orange in hue.  Although slightly different, this doesn’t distract from the overall appearance.

Layer cake design to accommodate the circuitry and the easy to use push clips to connect 5 Volt power (IBL).  Also, note that the circuitry board is not flush to the edge of the panel, enabling the radio to drop easily onto DZUS rails (drop & fly).  Also note the inclusion of OEM DZUS fasteners

Construction

The electronic components needed for the radios to function are contained within each panel. 

As such, The radios do not require interfacing with an interface card and are literally ‘plug and fly’.   The decision by FDS to incorporate all the circuitry within the panels minimises the wiring required, and the problem in finding space to attach an interface card.  

Depending on the radio, there are up to three layers that various electronic circuitry is attached, that includes integrated backlighting (IBL).  The front panel of the radio is backed by a piece of grey-coloured aluminium that adds strength to the unit and assists to dissipate heat from the 5 volt bulbs used to backlight the panel.  An electronics friend had a look at the electronics and was impressed with quality of the electronics board.  

What this amounts to is a well presented avionics panel that accurately replicates the radio in the Boeing 737 aircraft.  The radios are 1:1 in size.

Painting and Finish

All panels fabricated by Flight Deck Solutions, which includes the radios, are professionally painted in Boeing grey.  

Rather than one coat of paint which can easily be chipped, FDS apply several thin coats of paint to increase the durability of the final layer.  Although this point may appear token, the quality of paint and how it’s applied is important, because the radios will be used for many years, and during the course of operation you will be placing pens, clipboards, charts, coffee cups (etc) on the center pedestal and the radios.  Further, as the radio panels are flat, dust will accumulate requiring dusting and cleaning.  Low quality paint will scratch, fade and wear thin within a short period of time.  In my opinion, the quality of workmanship used by FDS, when it comes to painting is second to none.

DZUS Compliant

If you are using OEM parts in the simulator, in particular the center pedestal, then any panel that is DZUS compliant is advantageous, because it enables the panel to be dropped directly onto the DZUS rails to be secured by DZUS fasteners.  The radios can be placed directly onto the rails of an OEM center pedestal and the DZUS fasteners turned to secure the radio to the rail.

FDS IBL Series Distribution Expansion Board.  This board, the size of a credit card, enables 5 Volts to be distributed to several panels.  The coloured wires connect to 5 volts

Integrated Backlighting (IBL) and Power requirements

The radio panels are evenly backlit by FDS’s integrated backlighting (IBL).  IBL has been designed specifically to backlight panels in the identical fashion as is done in the real Boeing aircraft.

Rather than use LEDS for backlighting, FDS use OEM bulbs.  The primary advantage of IBL is the ‘throw of light’ which is greater from a single bulb than a LED (which is pin point).  The only way to achieve a similar light coverage to bulbs with an LED, is to use several LEDS mounted in close proximity to each other.  

Another point for consideration is that bulbs have a different colour temperature to LEDs.  Bulbs are warmer and produce a soft golden glow as opposed to LEDs that generate a harsher cooler light

The backlighting is superb.  The ‘throw of light’ covers all the stencilled letters and there are no dark or bright spots.  The only downside of IBL (if there is one), and this really doesn’t deserve mention, is that bulbs generate quite a bit of heat.  The life of a bulb is also less than a LED, however, FDS claim their bulbs have a life span of ~40,000 hours.

To power the backlighting will require a 5 volt power supply.  Although 5 Volts can be connected directly to the connectors on the rear of the panel, it’s recommended to use a IBL Series Distribution Expansion Board (FDS IBL DIST).

The expansion board will enable 5 volt power to be shared between several panels.  It’s all pretty straightforward and involves connecting some prefabricated wires with clips to the rear of each radio and to the card.  The card is then connected directly to the 5 Volt power supply.  The card I use is secured within the innards of the center pedestal.

To power the M-COMM 12 volts is required, in addition to 5 Volts for backlighting.

fds Ethernet switch and pen for scale

Connection and Set-up

If you are using avionics software other than ProSim737, software will need to be downloaded from the Flight Deck Solutions website (Texworx).

The software is very easy to use and installation self explanatory.  

Configuration of the radios is done via the software and involves indicating which NAV module is operated by which pilot (Captain or first Officer).  The M-COMM module uses the same software (you check the option for this panel during set-up).  The software is not required if using ProSim737.

If using ProSim737 avionic software, the ProSim-AR generic driver will recognise the FDS radios when they are plugged into your computer.  The radios will need to be configured (Captain or First Officer) and this is done in the config/driver section of ProSim737.

The concept of USB doesn’t need discussion, however, the ADF radios are connected via Ethernet. 

While it's possible to connect each radio separately to the main network switch, it’s easier to use a smaller network switch as a hub.  The switch I’ve used is supplied by FDS, is relatively small, can handle 8 Ethernet devices (expandability), and can be mounted into the center pedestal.  A single Ethernet cable then connects the FDS switch (hub) to the main network switch (and then to your computer).

If using Prosim737 avionics software, the radios (USB or Ethernet) can be connected to and run from the client computer.

Rear of ADF radio showing PCB, rear of encoders and push clips

Reliability and Performance

I’ve had the occasional dropout of the navigation and M-COMM radios, however, the ADF radios have worked flawlessly. 

I suspect that the reason for the navigation and M-COMM radios dropping out, is that the USB cables are connected to a powered hub, along with several other items.

I did trial the Tekworx software (using Sim Avionics) and I had several dropouts with the navigation radios that could not be rectified.  These dropouts stopped when I transferred to ProSim737.  

In some radios, there is a time lag when charging the radio frequency.  This time lag may be system dependent and/or a response to the limitations of USB.  This delay is not evident with the FDS radios.

Support

Support from FDS is either directly via e-mail or by a dedicated forum.  The support provided by FDS is outstanding and all e-mails are answered in a timely manner.  

Quick List (pros and cons)

PROS

  • Well designed & constructed (plug and fly).

  • Excellent workmanship.

  • Excellent painting.

  • Realistic Integrated Back-Lighting (IBL) with excellent illumination.

  • Realistic quality machine-injected switches & rotaries.

  • Size ratio is 1:1.

  • Very high attention to detail.

  • OEM DZUS compliant (drop & fly).

  • Easy to use and set-up software (if not using ProSim737).

  • M-COMM radio ideal if space is limited in pedestal.

  • Native support for Sim Avionics and  ProSim737.

CONS

  • Expensive price (subjective).

  • Tekworx software (V 1.8.8. & V 1.9.9) caused disconnection (drop-outs), however, no issues when using ProSim737.

Final Call

The radios are solid, well constructed and the attention to detail is as you would expect from Flight Deck Solutions.  The quality of the radios is very high and suits the high-end enthusiast to professional market.  

My rating for the Tekworx software is 5/10  (V1.8.8. & V 1.9.9)

My rating for the modules is 9/10

Please note that this review is my opinion only and is not endorsed.

  • Updated 13 July 2020.