Throttle Quadrant Rebuild - Flaps Lever Uses String Potentiometer

Flaps lever set to Flaps 30.  The throttle quadrant is from a Boeing 737-500 airframe. The flaps lever arc is the curved piece of aluminium that has has cut-out notches that reflect the various flap positions.  It was beneath this arc that micro-buttons had been installed

There are several ways to enable the flaps lever to register a particular flaps détente when the flaps lever is moved to that position on the flaps arc.

In the earlier conversion, the way I had chosen worked reasonably well.  However, with constant use several inherent problems began to develop.

In this article, we'll examine the new system.  But before going further, I'll briefly explain the method that was previously used.

Overview of Previously Used System

In the earlier conversion, nine (9) micro-buttons were used to register the positions of the flaps lever when it was moved (Flaps UP to Flaps 40). 

The micro-buttons were attached to a half moon shaped piece of fabricated aluminium.  This was mounted beneath the flaps lever arc and attached to the quadrant.  Each micro-button was then connected to an input on a PoKeys 55 interface card.  Each input corresponded to an output.

Calibration was straightforward as each micro-button corresponded to a specific flaps position.

Problems

The system operated reasonably well, however, there were some problems which proved the system to be unreliable.  Namely:

(i)    The vertical and lateral movement of the chain located in the OEM throttle quadrant interferred with the micro-buttons when the trim was engaged; and,

(ii)  The unreliability of the PoKeys 55 interface card to maintain an accurate connection with the micro-buttons.

Movement of OEM Chain

The chain, which is similar in appearance to a heavy duty bicycle chain, connects between two of the main cogs in the throttle quadrant.  When the aircraft is trimmed and the trim wheels rotate, the chain revolves around the cogs.  When the chain rotates there is considerable vertical and some lateral movement of the chain, and it was this movement that caused three micro-buttons to be damaged; the chain rubbed across the bottom section of the micro-buttons, and with time the affected buttons became unresponsive.

First Officer side of a disassembled throttle quadrant  (prior to cleaning and conversion).  The large notched cog is easily seen and it's around this cog that the OEM chain rotates (the chain has been removed)

It took some time to notice this problem, as the chain only rotates when the trim buttons are used, and the micro-buttons affected were primarily those that corresponded to Flaps 5, 10 and 15.  The chain would only rub the three micro-buttons in question when the flap lever was being set to Flaps 5, 10 or 15 and only when the trim was simultaneously engaged.

The cog and chain resides immediately beneath the flaps arc (removed, but is attached to where you can see the four screws in the picture). 

Although there appears to be quite a bit of head- space between the cog and the position where the flaps arc is fitted, the space available is minimal.  Micro-buttons are small, but the structure that the button sits is larger, and it was this structure that was damaged by the movement of the chain (click to enlarge).

An obvious solution to this problem would be to move the chain slightly off center by creating an offset, or to fabricate a protective sleeve to protect the micro-buttons from the movement of the chain.     However, the design became complicated and a simpler solution was sought.

Replacement System

Important criteria when designing a new system is: accuracy, ease of installation, calibration, and maintenance.  Another important criteria is to use the KIS system.  KIS is an acronym used in the Australian military meaning Keep It Simple.

The upgraded system has improved reliability and has made several features used in the earlier system redundant.  These features, such as the QAMP (Quick Access Mounting Plate) in which linear potentiometers were installed, have been removed.

String Potentiometer Replaces Micro-buttons

Single-string potentiometer enables accurate calibration of flaps UP to flaps 40.  The potentiometer is mounted on a customised bracket screwed to the First Officer side of the throttle quadrant superstructure.  The terminal block in the image is part of the stab trim wheel system

A Bourne single-string potentiometer replaced the micro-buttons and previously used linear potentiometers.  The string potentiometer is mounted to a custom-designed bracket on the First Officer side of the throttle quadrant.  The bracket has been fabricated from heavy duty plastic.

A string potentiometer was selected ahead of a linear potentiometer because the former is not limited in throw; all the flap détentes can be registered from flaps UP through to flaps 40.  This is not usually possible with a linear potentiometer because the throw of the potentiometer is not large enough to cater to the full movement of the flaps lever along the arc.

A 'string' is also very sensitive to movement, and any movement of the string (in or out) can be accurately registered.

Another advantage, is that it's not overly important where the potentiometer is mounted, as the string can move across a wide arc, whereas a linear potentiometer requires a straight direction of pull-travel.

Finally, the string potentiometer is a closed unit.  This factor is important as calibration issues often result from dust and grime settling on the potentiometer.  A closed unit for the most part is maintenance free.

The end of the potentiometer string is attached to the lower section of the flaps lever.  As the flaps lever moves along the arc, the string moves in and out of the potentiometer. 

The ProSim737 software has the capability to calibrate the various flap détentes.  Therefore, calibration using FSUIPC is not required.  However, if ProSim737 is not used, then FSUIPC will be needed to calibrate the flap détente positions.

Advantages

Apart from the ease of calibration, increased accuracy, and repeatability that using a string potentiometer brings, two other advantages in using the new system is not having to use a Pokeys 55 card or micro-buttons.

Unreliability of PoKeys 55 Interface Card

The PoKeys card, for whatever reason, wasn't reliable in the previous system.  There were the odd USB disconnects and the card was unable to maintain (with accuracy and repeatability) the position set by the micro-buttons.

I initially replaced the PoKeys card, believing the card to be damaged, however, the replacement card behaved in a similar manner.  Reading the Internet I learned that several other people, who also use ProSim737 as their avionics suite, have had similar problems.

Micro-buttons can and do fail, and replacing one or more micro-buttons beneath the flaps arc is a time-consuming process.  This is because the upper section of the throttle quadrant must be completely dismantled and the trim wheels removed to enable access to the flaps arc.

Registering the Movement of the Flaps Lever in Windows

The movement of the flaps lever, prior to calibration must be registered by the Windows Operating System.  This was done using a Leo Bodnar 086-A Joystick interface card.  This card is mounted in the Throttle Interface Module (TIM).    The joystick card, in addition to the flaps lever, also registers several other button and lever movements on the throttle quadrant.  

Final Call

The rebuild has enabled a more reliable and robust system to be installed that has rectified the shortfalls experienced in the earlier system.  The new system works flawlessly.

  • This article displays links to the majot journal posts concerning the 737 throttle: OEM Throttle Quadrant

Acronyms and Glossary

  • OEM - Original Aircraft Manufacture (real aircraft part).

Throttle Quadrant Rebuild - Clutch, Motors, and Potentiometers

Captain-side of throttle quadrant showing an overview of the new design.  The clutch assembly, motors, and  string potentiometer can be seen, in addition to a portion of the revised parking brake mechanism

An earlier article, Throttle Quadrant Rebuild – Evolution Has Led to Major Changes has outlined the main changes that have been made to the throttle quadrant during the rebuild process. 

This article will add detail and explain the decision making process behind the changes and the advantages they provide.  As such, a very brief overview of the earlier system will be made followed by an examination of the replacement system.

Limitation

It is not my intent to become bogged down in infinite detail; this would only serve to make the posts very long, complicated and difficult to understand, as the conversion of a throttle unit is not simplistic.

This said, the provided information should be enough to enable you to assimilate ideas that can be used in your project.  I hope you understand the reasoning for this decision.

The process of documenting the throttle quadrant rebuild will be recorded in a number of articles.  In his article I will discuss the clutch assembly, motors, and potentiometers. 

Why Rebuild The Throttle Quadrant

Put bluntly, the earlier conversion had several problems; there were shortfalls that needed improvement, and when work commenced to rectify these problems, it became apparent that it would be easier to begin again rather than retrofit. Moreover, the alterations spurred the design and development of two additional interface modules that control how the throttle quadrant was to be connected with the simulator.

TIM houses the interface cards responsible for the throttle operation while the TCM provides a communication gateway between TIM and the throttle.

Motor and Clutch Assembly - Poor Design (in previous conversion)

The previous throttle conversion used an inexpensive 12 volt motor to power the thrust lever handles forward and aft.  Prior to being used in the simulator, the motors were used to power electric automobile windows.  To move the thrust lever handles, an automobile fan belt was used to connect to a home-made clutch assembly.

This system was sourly lacking in that the fan belt continually slipped.  Likewise, the nut on the clutch assembly, designed to loosen or tighten the control on the fan belt, was either too tight or too loose - a happy medium was not possible.   Furthermore, the operation of the throttle caused the clutch nut to continually become loose requiring frequent adjustment.

The 12 volt motors, although suitable, were not designed to entertain the precision needed to synchronize the movement of the thrust levers; they were designed to push a window either up or down at a predefined speed on an automobile.

The torque produced from these motors was too great, and the physical backlash when the drive shaft moved was unacceptable.  The backlash transferred to the thrust levers causing the levers to jerk (jump) when the automation took control (google motor backlash).

This system was removed from the throttle.  Its replacement incorporated two commercial motors professionally attached to a clutch system using slipper clutches.

Close up image of the aluminium bar and ninety degree flange attachment.  The long-threaded screw connects with the tail of the respective thrust lever handle. An identical attachment at the end of the screw connects the screw to the large cog wheel that the thrust lever handles are attached

Clutch Assembly, Connection Bars and Slipper Clutches - New Design

Mounted to the floor of the throttle quadrant are two clutch assemblies (mounted beside each other) – one clutch assembly controls the Captain-side thrust lever handle while the other controls the First officer-side. 

Each assembly connects to the drive shaft of a respective motor and includes in its design a slipper clutch.  Each clutch assembly then connects to the respective thrust lever handle.  A wiring lumen connects the clutch assembly with each motor and a dedicated 12 volt power supply (mounted forward of the throttle quadrant).  See above image.

Connection Bars

diagram 1: crossection and a cut-away of a slipper clutch

To connect each clutch assembly to the respective thrust lever handle, two pieces of aluminium bar were engineered to fit over and attach to the shaft of each clutch assembly. 

Each metal bar connects to one of two long-threaded screws, which in turn connect directly with the tail of each thrust lever handle mounted to the main cog wheel in the throttle quadrant. 

Slipper Clutches

close up of slipper clutch showing precision ball bearings

A slipper clutch is a small mechanical device made from tempered steel, brass and aluminum.  The clutch consists of tensioned springs sandwiched between brass plates and interfaced with stainless-steel bearings.  The bearings enable ease of movement and ensure a long trouble-free life.

The adjustable springs are used to maintain constant pressure on the friction plates assuring constant torque is always applied to the clutch.  This controls any intermittent, continuous or overload slip.

A major advantage, other than their small size, is the ease at which the slipper clutches can be sandwiched into a clutch assembly.

Anatomy and Key Advantages of a Slipper Clutch

A number of manufacturers produce slipper clutches that are specific to a particular industry application, and while it's possible that a particular clutch will suit the purpose required, it's probably a better idea to have a slipper clutch engineered that is specific to your application. 

The benefit of having a clutch engineered is that you do not have to redesign the drive mechanism used with the clutch motors.

Key advantages in using slipper clutches are:

  • Variable torque;

  • Long life (on average 30 million cycles with torque applied);

  • Consistent, smooth and reliable operation with no lubrication required;

  • Bi-directional rotation; and,

  • Compact size.

The clutch assembly as seen from the First Officer side of the throttle quadrant.  Note the slipper clutch that is sandwiched between the assembly and the connection rods.  Each thrust lever handle has a dedicated motor, slipper clutch and connection rod.  The motor that powers the F/O side can be seen in the foreground

Clutch Motors

The two 12 Volt commercial-grade motors that provide the torque to drive the clutch assembly and movement of the thrust lever handles, have been specifically designed to be used with drives that incorporate slipper clutches.

In the real world, these motors are used in the railway and marine industry to drive high speed components.  As such, their design and build quality is excellent.

Each motor is manufactured from stainless steel parts and has a gearhead actuator that enables the motor to be operated in either forward or reverse.  Although the torque generated by the motor (18Nm stall torque) exceeds that required to move the thrust lever handles forward and aft, the high quality design of the motor removes all the backlash evident when using other commercial-grade motors.  The end result is an extraordinary smooth, and consistent operation when the thrust lever handles move.

A further benefit using this type of motor is its size.  Each motor can easily be mounted to the floor of the throttle quadrant; one motor on the Captain-side and the second motor on the First Officer-side.  This enables a more streamlined build without using the traditional approach of mounting the motors on the forward firewall of the throttle quadrant.

captain-side 12 Volt motor, wiring lumen and dual string potentiometer that control thrust levers

String Potentiometers - Thrust Levers 1/2

Two Bourne dual-string potentiometers have been mounted in the aft section of the throttle unit.  The two potentiometers are used to accurately calibrate the position of each thrust lever handle to a defined %N1 value.  The potentiometers are also used to calibrate differential reverse thrust.

The benefit of using Bourne potentiometers is that they are designed and constructed to military specification, are very durable, and are sealed.  The last point is important as sealed potentiometers will not, unlike a standard potentiometer, ingest dust and dirt.  This translates to zero maintenance.

Traditionally, string potentiometers have been mounted either forward or rear of the throttle quadrant; the downside being that considerable room is needed for the operational of the strings.  

In this build, the potentiometers were mounted on the floor of the throttle housing (adjacent to the motors) and the dual strings connected vertically, rather than horizontally.  This allowed maximum usage of the minimal space available inside the throttle unit.

Automation, Calibration and Movement

The automation of the throttle remains as it was.  However, the use of motors that generate no backlash, and the improved calibration gained from using string potentiometers, has enabled a synchronised movement of both thrust lever handles which is more consistent than previously experienced.

Reverse Thrust 1/2

Micro-buttons were used in the previous conversion to enable enable reverse thrust - reverse thrust was either on or off, and it was not possible to calibrate differential reverse thrust. 

Dual Bourne string potentiometer that enables accurate calibration of thrust lever handles and enables differential thrust when reversers are engaged

In the new design, the buttons have been replaced by two string potentiometers (mentioned earlier).  This enables each reverse thrust lever to be accurately calibrated to provide differential reverse thrust.  Additionally, because a string potentiometer has been used, the full range of movement that the reverse thrust is capable of can be used.

The video below demonstrates differential reverse thrust using theProSim737 avionics suite. The first segment displays equal reverse thrust while the second part of the video displays differential thrust.

 
 

Calibration

To correctly position the thrust lever handles in relation to %N1, calibration is done within the ProSim737 avionics software  In calibration/levers, the position of each thrust lever handle is accurately ‘registered’ by moving the tab and selecting minimum and maximum.  Unfortunately, this registration is rather arbitrary in that to obtain a correct setting, to ensure that both thrust lever handles are in the same position with identical %N1 outputs, the tab control must be tweaked left or right (followed by flight testing).

When tweaked correctly, the two thrust lever handles should, when the aircraft is hand-flown (manual flight), read an identical %N1 setting with both thrust levers positioned beside each other.  In automated flight the %N1 is controlled by the interface card settings (Polulu JRK cards or Alpha Quadrant cards).

Have The Changes Been Worthwhile

Comparing the new system with the old is 'chalk and cheese'.  

One of the main reasons for the improvement has been the benefits had from using high-end commercial-grade components.  In the previous conversion, I had used inexpensive potentiometers, unbalanced motors, and hobby-grade material.  Whilst this worked, the finesse needed was not there.

One of the main shortcomings in the previous conversion, was the backlash of the motors on the thrust lever handles.  When the handles were positioned in the aft position and automation was engaged, the handles would jump forward out of sync.  Furthermore, calibration with any degree of accuracy was very difficult, if not impossible. 

The replacement motors have completely removed this backlash, while the use of string potentiometers have enabled the position of each thrust lever handle to be finely calibrated, in so far, as each lever will creep slowly forward or aft in almost perfect harmony with the other.

An additional improvement not anticipated was with the installation of the two slipper clutches.  Previously, when hand-flying there was a binding feeling felt as the thrust lever handles were moved forward or aft.  Traditionally, this binding has been difficult to remove with older-style clutch systems, and in its worst case, has felt as if the thrust lever handles were attached to the ratchet of a bicycle chain.

The use of high-end slipper clutches has removed much of these feeling, and the result is a more or less smooth feeling as the thrust lever handles transition across the throttle arc.

Future Articles

Future articles will address the alterations made to the speedbrake, parking brake lever, and internal wiring, interfacing and calibration.  The rotation of the stab trim wheels and movement of the stab trim indicator tabs will be discussed.

This article is one of several that pertain to the conversion of the OEM throttle quadrant. A summary page with links can be viewed here: OEM Throttle Quadrant

Update

on 2018-04-11 01:08 by FLAPS 2 APPROACH

This article was not able to be published at an earlier time because of issues with confidentiality and potential patents.  The article has been re-written (March 2018). 

B737 Throttle Quadrant - Flaps UP to 40; Conversion and Use

This post examines the flaps lever on the refurbished B737 throttle and how it was converted to flight simulator use..

Flaps are used to slow the aircraft by creating drag, and to apply positive lift during takeoff.  The flaps lever is located on the First Officer’s side of the throttle quadrant. 

Subsequent movement of the flaps lever is indicated by illumination of the Le Flaps Transit and Le Flaps EXT lights located on the Main Instrument Panel (MIP), movement of a needle in the flaps gauge, a change of indication in the Primary Flight Display (PFD) and illumination of the Leading Edge Device (LED) panel located on the aft overhead panel. 

There are other less obvious indicators, but this is not the direction of his post.

The flaps lever is an integral part of the throttle unit.  Ensuring it operates correctly and with accuracy is important.

oem 737 throttle showing flaps arc and takeoff cg%mac

Safety Features

Newcomers to an OEM throttle quadrant are often surprised at how difficult it is to manipulate the flaps lever; it isn't a simple pull or push of a lever - there is a reason for this. 

When flaps are extended, especially at slow air speeds the flight dynamics of the aircraft are altered.  To protect against accidental flap extension, Boeing has designed the flaps lever so that a flight crew has to physically lift the lever before moving the lever to the required flap setting.  

Further safety has been designed into the system by having flaps 1 and flaps 15 guarded by a flaps gate.  The gate prevents straight-through movement of the flaps lever beyond flaps 1 and 15.  The  pilot must actually lift, push and drag the lever through the gate to the next setting.

It takes a short time to become accustomed to how to move the lever for smooth operation.

Traditional Approach used in Flaps Conversion

In most throttle conversions, a single potentiometer is used and the flaps are calibrated directly through FSUPIC.  A linear rod is attached to the potentiometer and then to the lower end of the flaps lever.  When the flaps lever is moved, the rod is moved forward or aft causing the potentiometer to turn to a defined and pre-calibrated position.  The analogue movement of the rod is converted to a digital signal that can be read by Flight Simulator.

In such a conversion, it’s important to ensure that the physical position of the flaps lever matches the flaps position used in Flight Simulator and in the flaps gauge.  It’s also vital that flaps are calibrated to ensure accurate operation.

The benefits of using this traditional method are that it’s “tried and true”, inexpensive and relatively easy to implement.  Calibration is the major key; however, using FSUIPC can be troublesome and time consuming, although once calibrated everything should operate reasonably well.  

Potentiometers - Accuracy and Longevity

Potentiometers came in a variety of sizes with differing throw values.  A throw is the length of movement that a potentiometer will allow a linear rod to move.  The larger the potentiometer the more throw allowed.  The potentiometer for the flaps must fit within the throttle unit beneath the flaps mechanism in a relatively small space.  Unfortunately, with Boeing 737 late model throttle’s there is minimal room to allow a larger than 60mm potentiometer to be installed.  Using a 60 mm potentiometer means that the device has a minimal throw.

This throw, if lucky, can be stretched to cater from flaps 0 to flaps 40, but only after facetiously calibrating with FSUPIC.  More often than not,  the throw will only reach flaps 1 or flaps 30.  Often this lack of throw goes unnoticed and many virtual pilots select flaps 40 believing they actually have flaps 40, but in reality it is flaps 30.

Longevity is another more minor issue when using potentiometers.  Most potentiometers have a +- tolerance during manufacture, are made cheaply and depending upon the type selected are open to contamination from dust and debris.  Dust on a potentimeter can affect the accurancy of the unit. At the very least, maintenance is required if the potentiometer is located in a dusty area.

Several Ways to Skin a Cat.....

To solve these potential problems two methods were assessed.  The first was using two micro- buttons at each end of the linear rod that connects the flaps lever with the potentiometer.  These buttons can be assigned directly with FSUPIC to flaps UP and flaps 40.  This theoretically would solve the shortness of throw experienced with traditional conversion and calibration.  Flaps UP and 40 are controlled by micro-buttons and everything in-between is calibrated within FSUPIC.

Working through an issue with the Flaps 5 micro button, custom VGA cable and PoKey card. it's not all fun.  Chasing problems can be frustrating and very time consuming

Micro-buttons

The second method is to replace the potentiometer with micro-buttons; thereby,  rectifying the issue of minimal throw.  Replacement will also alleviate the chance of a potentiometer being inaccurate, remove any chance of contamination, and also remove the tedious task of calibrating flaps in FSUIPC.   

The use of micro-buttons to control flaps movement is relatively novel, but the potential benefits of implementing this into the throttle unit could not be overlooked; therefore, it was decided to use this method.

Problems with Micro-buttons - Design of Lower Flaps Arc Plate (LFAP)

The first initial problem encountered is that micro-buttons are small, delicate and can be easily damaged if mounted directly onto the metal flaps arc.  Manipulating the flaps lever requires considerable pressure to pull, drag and drop the lever into the correct flaps detent position. Clearly, mounting the buttons on top of the metal flaps arc for direct contact with the flaps lever was not feasible.

After much thought, it was decided to fabricate from aluminum, a plate that replicated the arc that the flaps lever moves over.  This plate has been called the Lower Flaps Arc Plate (LFAP).  The micro-buttons were then strategically mounted to the plate, each buttons’ position corresponding to a flap position.  The LFAP with the mounted buttons was then mounted directly beneath the existing flap arc plate. 

Design Considerations

Before implementing a new design, considerable thought must be taken to potential problems that may arise from the design.  In the case of using micro-buttons the issue was connectivity and the possibility of a damaged or faulty button.  The LFAP can be accessed relatively easily by removing the First Officer's side panel which allows access to the plate from behind the trim wheel.

Half-moon Provides Accuracy, Reliability and Repeatability

To enable the micro-buttons to be triggered by the flaps lever, a half-moon piece of aluminum was fabricated using the same dimensions of the lower portion of the flaps lever.  One end of the "half-moon" was  curve-shaped pointing downwards. The "half-moon" was then screwed to the lower section of the flaps lever handle   

LEFT:  Rough initial sketch of half-moon showing relationship to flaps arc and micro-buttons.

When the flaps lever is dropped into a flaps detent position, the curved side touches and depresses the micro-button mounted on the lower flaps arc plate.  When the flaps lever is moved to another flaps setting, the lever is first lifted breaking contact with the button, moved to the next setting and dropped into the detent position triggering the next button and so forth.

Interface Card

A standard PoKeys 55 interface card was used to connect the outputs from the buttons to the avionics suite software.  ProSim737 software allows easy interfacing by allowing direct connection of a button to a specific flap position.  If ProSim737 is not used and the chosen avionics suite does not support direct connection, FSUIPC can be used to assign individual buttons to flap positions.  The PoKeys card is installed in the Interface Master Module (IMM).

Advantages of Micro-buttons - It's Worth The Effort...

The benefits of using micro-buttons cannot be underestimated. 

  • 100 % accuracy of flap movement from flaps UP to flaps 40 at all times.

  • No calibration required using FSUIPC.

  • Non-reliance on FSUIPC software as the installation is mechanical.

  • Very easy configuration of flaps UP through flaps 40 using ProSim737 software configuration.

  • Removal of the potentiometer and possible inaccuracy caused by +- variation.

  • No concern regarding possible contamination of the potentiometers.

  • Enhanced reliability of operation with no maintenance required.

  • Easy removal of the Lower Flaps Arc Plate to facilitate button replacement.

Back-up Potentiometer System

Although the use of micro-buttons is successful, I still have a potentiometer installed that can be used to operate the flaps.  The reason for installing the potentiometer was in case the micro-buttons did not work correctly; it would save time installing a replacement system.  To change from buttons to the potentiometer is as easy as disconnecting one quick release connector and reconnecting it to another.

qamp. the quick access mounting plate enablse 4 linear potentiometers to be mounted in one location. the qamp is located in throttle unit

Quick Access Mounting Plate (QAMP)

The potentiometer is mounted directly onto a custom-made aluminum plate that is attached to the inside of the throttle unit by solid thumb screws. 

The reason for the plate and screws was easy access should the potentiometer need to be cleaned or be replaced. 

To access the potentiometer requires the side inspection plate of the throttle be removed (a few screws) and then removal of the thumb screws on the access plate that allows the potentiometer to be dropped from its bracket.

Unfortunately, I failed to photograph the flaps QRMP before installation; however, its design is similar to all quick release plates used within the throttle unit.  The plates are made from aluminium and are attached to the throttle unit by thumb screws rather than nuts and bolts.  This allows for easier and faster change out if necessary.  The above image shows the QRMP for the throttle levers - the flaps QRMP is far smaller and thinner.

Troubleshooting

During testing a problem was observed with the micro-button for flaps 5.  For an unknown reason flaps 5 would not register correctly on the PoKeys 55 card.  After several hours troubleshooting the buttons and wiring, it was determined that the PoKeys card must have a damaged circuit or connection where they flaps 5 wire was installed to the card.

The problem turned out not to be the PoKeys card, but the Belkin USB hub installed to the Interface Master Module (IMM).  I had replaced the first hub (which I damaged) with another hub that had a lower voltage.  For some reason this lower voltage was not enough to allow operation of all the functions running from the hub. 

After replacing the hub with a higher voltage device, the issue with the flaps was immediately rectified.  Of course, this was after I spent literally hours troubleshooting flaps 5!  As stated earlier, teething issues on a new design can be frustratingly time consuming...

Video

I decided to make a short video that explains the button set-up a little better.  In the video you can clearly see the flaps arc, half-moon pencil and the micro-buttons.  The video is not the best quality as it was hand held in dim light after I removed the F/O side inspection plate of the throttle quadrant.  It's difficult if not impossible to setup a tripod in the flight deck once the throttle unit is bolted to the platform.

 

737 throttle flap arc buttons

 

Acronyms and Glossary

  • Flaps Arc – A curved piece of aluminum positioned directly beneath the flaps lever and corresponds to the curvature of the light plate.

  • Lower Flaps Arc Plate (LFAP) - A curved piece of aluminium that is the same size as the flaps arc and is mounted directly beneath the flaps arc.

  • Half-Moon Pencil – a custom fabricated piece of aluminum with a curved edge at one end.  Used to depress micro-buttons on flaps arc as flaps lever is moved..

  • OEM - Original Equipment Manufacturer.

  • Quick Access Mounting Plate QAMP – Quick Access Mounting Plate for the potentiometer that is a redundancy system for flaps movement.

  • Avionics Suite - Software that interacts with Flight Simulator to control avionics, gauges, etc - ProSim737, Sim Avionics, Project Magenta, etc.

Update

on 2014-02-12 02:13 by FLAPS 2 APPROACH

flaps half-moon

Several individuals have contacted me asking for a picture of the half moon, that is roughly sketched in the main post.  During a recent upgrade, the side panel and trim wheel were removed so I took the opportunity to take a photograph of the half-moon.

The half moon is secured to the lower section of the flaps lever by a screw, with the lower curved side facing downwards towards where the micro-buttons are positioned. The half-moon moves in unison with the flaps lever (when moved) and the curved section triggers micro-buttons as it passes over the button.  The micro-buttons are positioned at the correct position that relate to a specific flap detente.

Update

on 2019-09-09 07:29 by FLAPS 2 APPROACH

FLAPS OVERHAUL (LATE 2018/2019)

The mechanism used to convert the flaps on the throttle quadrant has been overhauled and replaced.  The method described in the above article worked well, however, a number of problems developed that were only noticeable after continual use.